406309

406 309

L33

bl

MEMORANDUM REPORT NO. 1461
MARCH 1963

THE RESPONSE OF CYLINDRICAL SHELLS TO
EXTERNAL BLAST LOADING

William J. Schuman, Jr.

RDT & E Project No. 1MO010501A006

BALLISTIC RESEARCH LABORATORIES

ABERDEEN PROVING GROUND. MARYLAND



ASTTA AVATLABILITY NOTICE
Qualified requestors may obtain copiles of this report from ASTIA.

The findings in this report are not to be construed
as an official Department of the Army position.



o A A oot I

BALLISTIC RESEARCH LABORATORTIES
MEMORANDUM REPORT NO, 1461

MARCH 1963

THE RESPONSE OF CYLINDRICAL SHELLS
TO EXTERNAL BLAST LOADING

William J. Schuman, Jr.

Terminal Ballistics Laboratory

Funded Under DASA NWER Sub-Task 02.053

RDT & E Project No. 1MO10501A006

ABERDEEN PROVING GROUND, MARYLAND



BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 1461

WJSchuman/cet
Aberdeen Proving Ground, Md.
March 1963

THE RESPONSE OF CYLINDRICAIL SHELLS
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ABSTRACT

A method of predicting permanent deformation of thin-walled unstiffened
cylindricsl shells to external blast loading fram charges of high explosives
is presented. Empirical relations are derived fram a series of firings con-
ducted at Aberdeen Proving Ground against scaled shells. The average deviation
between the predicted and the actual blast pressures required for permanent
deformation is 12%.
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INTRODUCTION

The problem of missile vulnerability 1s quite complex, involving many

factors.

)
A quick resume of these factors will establish the relationship of

the present report to the overall problem.

Missile Condition - A missile may be in the storage, transport, launch,

Kill

in-flight, or re-entry condition. The missile was considered to be
in an unhardened, launch ~ondition in this study.

Mechanisms - A missile 1s vulnerable in varying degrees to fragments,
x~rays, thermal inputs and blast. Blast is the mechanism of concern
in this study and it may be further divided into: overturning of
the complete missile, excess acceleration loading of internal struc-
tural and electrical components, and crushing of the basic structure
and internal components. This report will be limited to considers-
tions of crushing damage to the basic structure.

Approach - The problem may be treated theoretically or experimentally.

A survey of previous work indicated that some analytical studies had
*

been made at Brooklyn Polytechnic Institutel and Columbia Univer-

sity2 for various loading and boundary conditions. The Space Tech-

nology I..abora.t;ories3

have conducted tests on mylar cylinders with
uniform compressive loadings and rise times much slower than those
obteined from blast. Aveo Corporea.‘t.ionlL has used sheet explosive
applied to segments of the surface of a cylinder to obtain deforma-
tion. Southwest Research Ima‘t'.:t‘l:u‘t:e5 i1s also studying this problem
and has conducted some experimental work with flexural type loadings.
Suffield Experimehtal Sta.tion6 is Investigating the details of blast

loading of various simple structures, including cylinders.

The lack of experimental data, the complexity of the required
theoretical analyses and the urgent need for design data were impor-
tant factors in deciding that both an experimental and theoretical
approach be taken, with the experimental phase receiving precedence.
Only the experimental phase of the study will be reported at this
time.

¥ Superscripts refer to references listed at end of report.
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Targets - There are three types of targets that might be chosen: actual
hardware, scaled-models and simplified models. It was decided to
utilize simplified models to define the basic parameters and their
relatiorships before proceeding to the more sophisticated models and
actual hardware. The simplified model chosen was & right-circular,
thin-walled, unstiffened cylinder.

The primary goel of the first phase of this study was to develop an
empirical method of predicting the blast parameters necessary to cause perma=-
nent deformation of a wide spectrum of cylinder geometries and materials. The
secondary goal was to obtain details of loading and response for correlation
and to aid in further studies.

TEST ARRANGEMENTS AND PROCEDURES

Preparation of Models

The cylindrical shells were fabricated from steel and aluminum foll, sheet
and tubing. The steel shells were formed from 1040 hot-rolled sheet and butt-
welded. The aluminum shells were either sections of 6061-T6 seamless tubing
or formed from 1100-0 or 5052-H3" foll and fastened by solder or by cloth-
backed adhesive tape. The shell diameters varied from 3 to 24 inches, the
lengths from 2 to 48 inches, and the thicknesses from 0.003 to 0.136 inches.
These dimensions provided shells that were geometrically scaled and have length-
to-diameter ratios of 0.7 to 10 and diameter-to-thickness ratios of 60 to 2000.
The dimensions of the shells used are presented in Table I.

A few representative shells were instrumented internally with Baldwin-
Lima-Hamilton FAB-25-35, 350-ohm foil strain gages for measuring details of
response. One gege pattern 1s shown in Fig. 1. A solid cylinder (non-
responsive) was instrumented with flush-mounted piezoelectric gages for measur-
ing detalls of loading. The gage pattern is shown in Fig. 2.

The shells were fastened to heavy end caps and this assembly then was
fastened over & rigid tube. This tube prevented rotation of the end caps
about an axis perpendicular to the longitudinal axis of the shell and there-
fore minimized bending in the shell. A schemstic of the shell and support
tube assembly is shown in Fig. 3.
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Test Arrangements

The blast loading was provided by detonating charges of high explosive
(HE) renging in weight from one pound to 216 pounds. The smaller charges of
bare spherical Pentolite was suspended as shown in Fig. 4. The larger charges
were placed on the ground. The free air blast parameters; overpressure,
impulse, and duration are determined by use of tabulated data'’C, (References 9
and 10 define and discuss the various blast parameters.)

The shell and support tube assemblies were mounted on portable stands at
a height of 6 feet to minimize ground effects as shown in Figs. 4 and 5. They
wvere oriented with respect to the charge so that the blast impinges on the
shells elther along a line perpendicular to the longitudinal axis (lateral
loading) or along an extension of the longitudinal axis (longitudinal loading).
A nose cone was added to the shell for the longitudinal loading orientation to
minimize the disturbance of the flow.

Test Procedure

A group of uninstrumented shells were positioned about an explosive charge
at various distances such that the pressure levels would be below that required
to cause permanent deformation. The shells were then repositioned in incre-
ments until optimum deformation - defined in this study as approximately 5% to
10% of the original dismeter - was obtained.

The instrumented cylinders were fired on individually because of instru-
mentation requirements. The slgnals from the strain gages were recorded by &
16 channel CEC Miller Recording Oscillograph that has a maximum writing speed
of 40O in/sec and a frequency response of DC to 200 KC. The signals from the
pressure gages were amplified, presented on cathode ray tubes and recorded by
General Radio streak cameras., This system has a maximum writing speed of 2500
in/sec and a frequency response of DC to 100 KC.

TEST RESITLTS AND DISCUSSION

Uninstrumented Shells

Values of overpressure and impulse for the shells fired on are listed in
Tables II and III for the lateral and longitudinal loading orientations.

13
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Plots of incident impulse (Ii) vs. incident pressure (pi) for the shells
listed in Table IT as having epproximately the optimum deformation are pre=-
sented in Fig. 6. Iso-damage curves are drawn through these points that
represent the various combinations of pressure and impulse for equivalent
deformation of a given shell material and configuration (see polnts 4-5-6-7,
54-55-56, etc., Fig. 6). These curves form the boundaries between regimes of
deformation and non-deformation.

The effect of variations of explosive weight on the blast parameters can
easlly be determined from these curves. As the explosive welght increases,
moving from right to left along one of these curves, the impulse increases
but the pressure decreases. For very large explosive weights the pressure-
time histories will approach a step function (long durations, high impulse
values) and the iso-damage curves should approach asymptotically some minimum
value of pressure that will cause deformation.

If curves are drawn through different sets of points (i.e., 4-8-10, etc.)
the effects of changes in length of the shells can be determined. In this
case, the curve appears as a straight line. As length 1s increased, moving
from right to left (all other parameters constant) the required values of
pressure and impulse decrease. It is expected that an increase in length
beyond a certain minimum value will not produce a further reduction in pres-
sure and impulse values. At this point, the shell can be considered infinite
and end conditions will not influence the deformation at the center. This
minimum length has not been determined at this time.

In like manner, the variation of pressure and impulse values for changes
only in diameter, thickness or type of material can be determined. As expected,
an increase in pressure and impulse values is required if either the thickness
is increased or the diameter decreased.

Having a family of iso-damage curves and the variation of the significant
parameters, it is possible to generate a method of predicting deformation of
cylindrical shells. The details of the method will be presented in the next
section, "Prediction of Deformation.”
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The nearly vertical, dotted lines on Fig. 6 show that shells of different
configurations will be deformed at the same pressure level by unlike explosive
veights. A close examination of the connected points indicates that "geomet-
rical” modeling laws apply for these large deformations. For example, refer
to Fig. 6 and Fig. 7 - Scaling Parameters, and Table II: Point 5 on Fig. 6
represents a cylinder of given geametry (3 in. diemeter, 8.62 in. length,
0.019 in. thickness) laterally loaded by an explosive weight of 8.4 lbs.
positioned at a distance of seven feet. The equivalent deformation of a shell
whose geametry has been scaled by the factor K = 2 (Point 23 - 6 in, diameter,
17.50 in. length, 0.035 in. thickness) exposed to an explosive weight of

64 1bs. (i.e., W oc ij or D oc 3% or D, oc 3 Bk oc 2 and, therefore,

W00 © . Dv3 oc (2)3 . (2)3 oc 64) located at a distance of 2d = 2 x 7 = 14 ft.
validates this conclusion as do the other sets of points.

There are two general deformation patterns arising from lateral loadings:
a single transverse crease or multiple longitudinal lobes. Typical transverse
and longitudinal patterns are shown in Figs. 8 - 10 and 11 and 12. A typical
deformation pattern resulting from longitudinal loading is shown in Fig. 13.
Photographs of all shells are presented in Appendices A and B for the lateral
and longitudinal loadings respectively.

The two lateral loading patterns seem to be primarily a function of the
shell geametry. The thicker shells deform with a transverse crease while the
thinner form a lobe pattern. However, one of the shell. deformed in & com-
pound pattern when the explosive weight was increased. (See Fig. 1l4.) Further
investigation is required to define the applicable parameters and their vari-
ation.

One she]l was tested statically to compare its pattern with those shown
in Figs. & - 10. The shell and support tube assembly was mounted on v-blocks
in a testing machine. The line load was applied perpendicular to the center-
line of the shell at the center with a 1/4 x 4 inch striker plate. The
deformation pattern is similar to that of the transverse crease (see Figs. 15
and 16). The shell commenced to deform at 3 1b. load and the load increased

22
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continuously as the deformation lncreased. The load was increased to a maxi-
mum value of 10 1lb, and then removed. This requlrement that the load must be
increased in order to increase the deformation also agrees with the blast
loading results.

Instrumented Shells

The results of exploratory firings for checking out the strain gage
recording system are presented in Table IV. Only peak strains were read.
Additional firings will be conducted and the results coordinated with similar
investigations being carried out at the Suffield Experimental Station.

A number of firings have been made against the solid loading cylinder,
but calibration difficulties preclude presenting the data at this time,

PREDICTION OF DEFORMATION

A semi-graphical method for predicting the critical incident pressure
required to cause permanent deformation for a cylindrical shell in the lateral
loading orientation has been generated. The necessary curves are shown in
Figs. 17 - 20.

The four curves of Fig. 17 are plots of the length-to-diameter ratio -
L/D - vs. critical incident pressure Pop for the four materials tested: steel
and the three types of aluminum alloy. Each of these curves is based on a
change of L/D for a constant explosive weight of one pound, a diameter of three
inches and a thickness of 0,019 in. for steel and 0.006 in. for aluminum.

If the explosive weight, diameter, or thickness are different from the
above standard values, the value of critical incident pressure pcr must be
adjusted. The necessary correction factors have been determined from the inde-
pendent effect of each of these factors on the critical pressure and are given

in Figs. 18 - 20. The required pressure is then:

Pcr = pcr KD Kt Kw

where Pcr = Critical Incident Pressure for lateral loading
P,, = Critical Incident Pressure (for standard conditions) (Fig. 17)
Kw = Correction factor for explosive weight /Fig. 18)
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TABLE IV
Strain Data for lateral Loading of Shell*

Round No. 106 107 109 110 nm
Explosive Wt. (1b) 1.06 1.06 1.07 8.19 8.19
Explosive Dist. (ft) 3.75 3.75 3.5 8.0 8.0
Press. p; (psi) 69.2 69.2 82.4 58.8 58.8
Gage Position Maximum Strain ( in/in)
1L 603 | 551 611 -- --
1c 1635 1281 1749 1923 --
2L 559 536 752 581 633
2 790 752 1112 656 894
3L 909 668 1308 726 983
3C 1065 663 646 1749 1543
LL 577 5Tk Th5 612 656
uc 641 51l 790 T34 1013

*Shell Dimcnsions - Diameter - 3", Length - 9", Thickness - .019", Material -
Jtee
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Kp = Correction Factor for Diameter (Fig. 19)
X, = Correction Factor for Thickness (Fig. 20)
As an example, consider Shell No. 30. It is steel and L/D = 2.94 (Table I).
Therefore pcr = 150 psi
D
also D = 12.0 in., 3= 4 and K, = 0.27
R t _
t = 0.136 in., 57055 © 7.17 and K, = 4.2
W = 389 1lb., Kw = 0.265

Therefore Pcr pcr KD Kt Kw

(150) (0.27) (24.2) (0.265)

!

P

or 260 psi

W

The actual pressure was pi = 257 psi. Therefore, the deviation of the
predicted value from the actual value 1s + 1.2%.

The average deviation between predicted and actual pressures for the
laterally-loaded cylinders listed in Table V is 12% with a spread of -40%
to + 4O%.

If the shell is exposed to longitudinal loading, the pressure required
for deformation is higher. The data presently available seem to follow the
general trend of the other set of iso-damage curves. Therefore, the critical
pressure for the lateral loading should be determined and multiplied by a

factor of A where A 6.0 for steel, and A 752.0 for aluminum.
CONCLUSIONS

The primary goal of the first phase of an investigation of the response
of thin walled cylinders exposed to external blast loading has been achieved.
An empirical method of prediecting the critical incident blast pressure required
to cause permanent deformation has been presented. The correlation of pre-
dicted and actual pressure values is satisfactory (average deviation of 124).
However, there are several areas requiring further investigation. It is
planned to conduct a series of firings in the 1000 lb. to 30,000 1b. explosive
weight range at the Yuma Test Station the early part of 1963. This will help
define the iso-damage curves at much higher impulse levels.
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TABLE V
Comparison of Actual and Predicted Pressures for Optimum Deformation

Shell Incident Predicted Deviation Remarks
Ko. Pressure® Critical Premaure (%)
i Pe
(pel) (pei)
1 117 11k 2.6
2 48.5 58.2 +20.0
g W8 - - No Deformation
b) 463 LBl +4.6
4 159 149 -6.3
5 82.4 80. -2,2
6 58 52.6 -9.3
T 39.7 39.7 0
8 118 m -5.9
9 60.3 59.8 -0.8
10 82.4 86.5 +5.0
n 4.8 46.8 +4.5
12 36.0 37.9 +5.3
13 17.4 19.3 +11.0
1) 27.9 28.6 +2.5
15 2.9 4.5 - No Deformation
16 213 217 +1.9
17 166 143 -16.1
18 96.7 107 +12.1
19 172 103 -40.0
20 36.0 4o.6 +12.8
21 21.8 20.7 -5.0
22 130 112 -13.8
23 91.3 73.0 -20.1
24 63.6 55.9 -11.3
25 463 389 -16.0
26 209 25k - No Deformation
27 17h 195 +12.0
28 83.7 102 +22.1
29an* 617 612+ - No Deformation
29 skl T86%*+ - No Deformation
30 257 260 +1.2
31 83.7 196 - Less Than Optimum
320 Lok 1176% - " Deformation
33 1.87 2.21 +18.2
34 5.05 5.06 +0.2
35 3.0k 2,74 -9.9
36 1.62 1.80 +11.1
37 1.65 1.37 -16.9  Greater Than Optimum
38 12.1 12.2 +0.8 Deformation
59 7'9“ 6' 59 '17-°
ko h.26 h.33 +1.6
'3 | 2.94 3.3 - No Deformation
42 1.06 2.63 - No Deformation
b3 2.0 2.27 +13.5
bh 2. 29.2 +40.0
] 13.5 15.8 +17.0
16 11-5 10.‘6 '9.6
L4 58.8 69.5 +18.2



TABLE V (Cont'd)

Shell Incident Predicted Deviation
Fo. Pressure* Critical Pressure (%) Remarks
Pi Per
(psi) (psi)
48 45.6 37.6 =17.5
b9 35.0 24,7 -30.6
50 2.50 2.53 +1.2
51 1.50 1.4k2 -4.5
P 1.84 1.87%ex +1.6
53 0.82 <935 +16.5
Sk 7.94 6.30 -20.7
55 5.14 3.40 -33.9
56 2.47 2.24 ~9.3
57 57.5 92.0 - No Deformation
58 45.6 k9.6 +8.8
59 264 205 -22.4
60 107 115 +7.5
61 113 107 -5.3
62 57.5 57.5 )
63 12.4 11.0 - Excess Deformation
64 7.80 7.88 +1.0
65 7.80 5.38 - Excess Deformation
66 3.97 h.61 +16.1
67 3.53 3.46 -2.0
68 1.9 1.76 -7.8
69 11.9 1.95 - Excess Deformation
T0 7.65 1l.ko - Excess Deformation
T1 4.18 1.42 - "
T2 1.07 1.28 +19.6
TH%* 46.3 6.92%%% - Excess Deformation
Thsw 3k.5 3.00%#* - "
T - - - Static Test
76 2.57 2.95 +14.8
T 4.85 2.% - Excess Deformation
78 2.50 1.35 - "
719 1.91 1.73 -9.4
8o 7.80 6.40 -17.9
81 5.68 3.60 -36.6
82 3,24 3.27 +1.0
83 11.5 12.9 - No Deformation
8y 9.4 9.38 -0.3
85 12.4 18.8 - No Deformation
86 7.35 9.63 - "
87 7.20 6.99 -2.9
a8 7.80 8.3 +6.4
8 7.65 4.65 - Excess Deformation
90 3.97 4.23 +6.5
91 2.16 3.07 - No Deformation
92 1.40 1.55 +10.7
93 1.54 1.33 -13.6
ol 2,32 4.86 - No Deformation
95 2.16 3.63 - "
96 5.28 2.20 - Excess Deformation

=
,_l



TABLE V (Cont'd)

Shell Incident Predicted Deviation Remarks
No. Pressure* Critical Pressure
Pi Per
(psi) (psi)
97 5.28 3.18 - Excess Deformation
98 1.76 2.30 +30.7
99 83.7 91.0 +8.7
100 218 217 0.5

* From Tables II & III

**  Longitudinal loading Orientation (all others are lateral loading

orientation)

*## Predicted Critical Pressures for lateral Loading Orientation have been
Multiplied by 6.0 for Steel, 2.0 for Aluminum
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Shells are being fabricated with greater lengths to determine at what
point end conditions may be neglected. The variation in deformation patterns
will be studied further. The iso-damage curves for the longitudinal loading
orientation will be defined more accurately, The effects of free-body motion
of the shell are now being studied.

Continuation of study of the instrumerted shellis will provide valuable
date for analytical correlation of the loading and response.

Future work with actual hardware will determine the degree of applicabil-
ity of these simplified models.

This 1s an interlm report released at this time so that Government and

private agencles may integrate these results into overall vulnerability
analyses.

ACKNOWLEDGMENTS

The assistance afforded the author by Professor Norman Davids, Department
of Mechanics, the Pennsylvania State University in the planning of these tests
and in the preparation of this report is gratefully acknowledged.

Acknowledgment is also made of the assistance of Miles Lampson, Harry
Goldstein and the many members of the BRL field crew in conducting experiments

at BRL ranges.
WILLIAM J. _ASCHUMAN, JR.

L3



APPENDIX A

DEFORMATION OF LATERALLY LOADED SHELLS
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F|G. 6 - SHELL NO. 5-FRONT VIEW
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FIG.7 — SHELL NO. 6 - SIDE VIEW
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FIG. |0— SHELL NO.8- SIDE VIEW
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FIG. Il ~ SHELL NO. 8 — FRONT VIEW
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FIG.I2 — SHELL NO.9 - SIDE VIEW
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FIG. 13— SHELL NO. 9 -FRONT ViEW
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FIG. 14 — SHELL NO.10 — SIDE VIEW
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FIG.15 ~ SHELL NO. 10 — FRONT VIEW \
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FIG. 20 — SHELL




FIG. 21— SHELL NO. 16
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3 FIG. 22 -SHELL NO. I8

!




INTHES

FIG.23 — SHELL NO. 19
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FIG. 24 - SHEL NO. 20




B FIG. 25 -SHELL NO.2I-FRONT VIEW
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FIG. 26— SHELL NO. 21 - SIDE view MR
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FIG.27 - SHELL NO. 2l - REAR VIEW
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FIG. 29 —SHELL NO. 22-FRONT VIEW









FIG. 32 — SHELL NO. 24 B
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SCALE IN INCHES

FIG. 34~ SHELL NO. 27 —SIDE VIEW
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SCALE IN INCHES

FIG. 39 — SHELL NO. 31




FIG. 40~ SHELL NO. 33
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M FIG. 41 - SHELL NO. 34FRONT VIEW
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FIG. 50 - SHELL NO. 40- REAR VIEW |
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FIG. 51 — SHELL NO. 44
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FIG. 53 -SHELL NO. 46- FRONT VIEW
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FIG. 55- SHELL NO. 47 §
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FIG. 56 — SHELL NO. 48
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FIG. 57 - SHELL NO.50 _




INCHES

f

FIG. 58- SHELL NO. 5
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FIG. 60— SHELL NO. 54




FIG. 61 - SHELL NO.55-FRONT VIEW




B FIG. 62- SHELL NO. 55- REAR VIEW
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Fl664- SHELL NO. 58
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FIG. 65 -SHELL NO. 59




R FIG. 66— SHELL NO. 60 |
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FIG 68 - SHELL NO.62
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FIG. 70- SHELL NO. 63-REAR VIEW
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FIG. 71- SHELL NO.64 -FRONT VIEW
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FIG. 72- SHELL NO.64-REAR VIEW )
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FIG. 74— SHELL NO. 66—-FRONT VIEW







FIG. 76 - SHELL NO.67 - FRONT VIEW
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I FIG. 77 -SHELL NO.67-REAR VIEW
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FIG. 78— SHELL NO. 68-FRONT VIEW &
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FIG. 80~ SHELL NO.69~FRONT VIEW
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FIG. 81 -SHELL NO.69-SIDE VIEW
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FIG. 82— SHELL NO. 7|-SIDE VIEW
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W FIG. 83 -SHELL NO. 7I- REAR VIEW
















FIG.88~ SHELL NO. 77
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B FIG. 89-SHELL NO.78







FIG. 91— SHELL NO. 80 -FRONT VIEW
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FIG.92- SHELL NO. 80 - REAR VIEW
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FIG. 94-SHELL NO. 82 §
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| FIG. 98 - SHELL NO. 88- SIDE VIEW




FIG. 99~ SHELL NO. 89 ~-FRONT VIEW

\




INCHES

FIG. I00 -SHELL NO. 89— REAR VIEW
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. FIG. 10 ~SHELL NO. 90-FRONT VIEW
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FIG. 102- SHELL NO. 90- REAR VIEW .
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FIG. 103~ SHELL NO. 92 - FRONT VIEW
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FIG. 107~ SHELL NO. 96 - FRONT VIEW
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SCALE IN INCHES

FIG. 109- SHELL NO.97- FRONT VIEW
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DEFORMATION OF LONGITUDINALLY LOADED SHELLS
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FIG. | - SHELL NO.3b—FRONT VIEW
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FIG. 2~ SHELL NO.3b—END VIEW
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